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I. Introduction

Parametric analysis and modeling of signals
using an autoregressive model with constant coef-
ficients has found application in a variety of con-
texts including speech and seismic signal pro-
cessing, spectral estimation, process control and
others. In many cases, the signal to be modeled
is time-varying. However, if the time variation
is relatively slow, it is nevertheless reasonable to
apply a constant model on a short-time basis, up-
dating the coefficients as the analysis proceeds
through the data [1], [2].

ADAOS4312

In this paper, we consider autoregressive sig-
nal modeling in which the coefficients are time-
varying. In our method, each coefficient in the
model is allowed to change in time by assuming it
is a linear combination of some set of known time
functions. Using the same least-squares error
technique as used for modeling with constant coef-
ficients (LPC, see Section II), the coefficients of
the linear combinations of the time functions can
be found by solving a set of linear equations.
Therefore the determination of the model param-
eters for time-varying LPC is similar to that for
traditional LPC, but there is a larger number of
coefficients that must be obtained for a given order
model.

L —
DDC FILE COPY

There are many possible advantages of time-
varying LLPC. The system model may be more
realistic since it allows for a continuously changing
behavior of the signal. This should enable the
model to have increased accuracy and sensitivity.
In addition, the method may be more efficient since
it will allow for the analysis over longer data win-
dows. Therefore, even though time-varying LPC
involves a larger number of coefficients than
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traditional LLPC, it will divide the signal into fewer
segments. This could result in a possible reduc-
tion of the total number of parameters needed to
accurately model a segment of data for time-
varying LPC as compared with regular LLPC.

An interesting problem in itself is the question
of how exactly to measure and assess the perfor-
mance of the time-varying LPC estimation method.
One of the goals of this work has been to explore
methods for understanding the time-varying models
and for evaluating their performance.

II. Time-Varying Linear Prediction

For all-pole signal modeling, the signal s(n)
at time n is modeled as a linear combination of
the past p samples and the input u(n), i.e.,

P
s(n) = - T a;s(n-i) + Gu(n).
i=1

(2.1

The method of linear prediction (or linear
predictive coding LLPC) has been used to estimate
the coefficients and the gain factor [1],[2]. For
LPC, it is assumed that the signal is stationary
over the time interval of interest and therefore the
coefficients given in the model of Eq. 2.1 are con-
stants. For speech, for example, this is a reason-
able approximation over short intervals (10-30
msec).

For the method of time-varying linear pre-
diction, the prediction coefficients are allowed to
change with time, so that (2.1) becomes

p
s(n) = - 2 ai(n) s(n-i) + Gu(n).
i=1

(2.2)

*T'nis work was conducted in part at the M.I. T. Research Laboratory of Electronics with partial support
provided by the Advanced Research Projects Agency monitored by ONR under Contract N00014-75-C-
0951-NR 049-308, and in part at the M.I.T. Electronic Systems Laboratory with partial support provided
by the Air Force Office of Scientific Research under Grant AFOSR=-77-3281.
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With this model, the signal is not assumed to be
stationary and therefore the time-varying nature
of the coefficient a.(n) must be specified.

The actual time variation of ai(n) is generally

not known. However, the coefficients can be ap-
proximated as a linear combination of some known
functions of time, uk(n), so that

q

ai(n) = kfo aikuk(n). (2.3)

With a model of this form the constant coefficients
a;, are to be estimated from the speech signal,

where the subscript i is a reference to the time-
varying coefficient ai(n), while the subscript k is

a reference to the set of time functions uk(n). With-

out any loss of generality, it is assumed that
uo(n) = 1. Possible sets of functions that could be

used include powers of time

k

Uy (n) =n (2. 4)

or trigonometric functions as in a Fourier series
uk(n) = cos(kwn) k even
(2.5)

uk(n) = sin(kwn) k odd

where o is a constant dependent upon the length of
the speech data. Liporace [3] seems to have been
the first to have formulated the problem as in

Eq. 2.3. His analysis used the power series of
the form of (2. 4) for the set of functions.

From Eqgs. 2.2 and 2. 3, the predictor equa-
tion is given as

§(n) = - = S a.,u (n)] s(n-i) (2. 6)
=1 \k=0 ="

and the prediction error is

e(n) = s(n) - §(n). (2.7)

As in LPC, the criterion of optimality for the coef-
ficients is the minimization of the total squared
error

2

p 4
E=2 e?‘(n) =Z (sm) + =T = a.kuk(n) s(n-i) | .
n n i=1 k=0 '

(2. 8)

Minimizing the error with respect to each coeffi-
cient and defining

Cplisd =§ U (n) uy(n) s(n=i) s(n=j) (2.9

the coefficients are specified by the equation

P q
izzl kfo aikckl(l"]) = 'COQ(O'J)

For the coefficient ckl(i’j)' the subscripts k and {

refer to the set of time functions, while the vari-
ables inside the parentheses, i and j, refer to the
signal samples. Since uo(n) =1, the time-varying

LPC coefficients coo(i,j) are the same as the LPC
coefficients.

The minimization of the total error results in
a p(q+l) set of equations that must be solved for the
coefficients CI The time-varying LLPC equations

reduce to the LPC equations for q = 0, that is, when
a.(n) is a constant, a.(n) = a. .
i i io

The limits of the sum over n can be chosen to
correspond to the limits for the covariance and
autocorrelation methods of LPC. For the covari-
ance method, the sum over n goes from p to N-1,
and (2.10) can be expressed in matrix form

a = -y (2.11)

al = [a,.,a,.,a o oeig (2.12)

a, 172210 Bapr e B <i<q f

wT = [c_.(0,1),c_.(0,2) c .(0,p)] O0<is<

Wi U0 Mne (0 el oy S05(0. P ki
(2.13)

Also, ® is a (q+l) X (g+1) block symmetric matrix
with (pXp) symmetric blocks. The (i, j) element of
the (k, £) block of & is Ckl“'j)'

Equation 2. 10 can alternatively be expressed
so that & is a (pXp) block symmetric matrix with
(q+1) X (q+1) symmetric blocks (see [4]).

A similar, but not identical, set of equations,
analogous to the autocorrelation method in the
time-invariant case, can be formulated by window-
ing the data and minimizing the error over an in-
finite time interval. In this formulation, in order
that the matrix & in Eq. 2.11 can be expressed as
a block Toeplitz matrix, Eq. 2.3 is modified to

q
ai(n) = kfo aikuk(n-i) l1<i<p. (2.14)

The limits of the error minimization for the
time-varying covariance method have been chosen
so that the squared error is summed only over
those speech samples that can be predicted from
the past p samples. However, the error for the
time-varying autocorrelation method is minimized
over the entire time interval (the same range that
is used for the traditional LPC autocorrelation
method). Therefore, the distortions of the LPC
coefficients due to the discontinuities in the data at
the ends of the interval evidenced in the time-
invariant case apply also to the time-varying coef-
ficients, This distortion in the coefficients

1086




estimated by the autocorrelation method may or
may not be significant depending on the data at the
ends of the interval.

Windowing of the signal is a usual practice for
the LPC autocorrelation method in order to reduce
the distortion. However, even though windowing
might reduce the end effects for the autocorrelation
method, it also imposes an additional time varia-
tion upon the speech sample. This tends to cause
two problems. The estimates of the coefficients
by time-varying LPC will be adversely affected
since the method, by its very formulation, is sen-
sitive to any time variation of the system param-
eters such as that caused by the windowing of the
signal. In addition, the window affects the relative
weight of the errors throughout the interval. Since
the windowed data at both ends of the interval will
be smaller, there is more signal energy in the cen-
tral data. Therefore the minimization of the error
will result in coefficients that in general will re-
produce the signal in the center of the interval bet-
ter than at the ends.

Because of distortion in the estimates caused
by the end effects when the data is not windowed
and the possible adverse effects on the estimates
when the data is windowed, the autocorrelation
method seems to have more disadvantages than the
covariance method. Since a window will have the
same distortive effect for the covariance method,
the use of a window does not seem beneficial.

Because the number of coefficients increases
linearly with the number of terms in the series
expansion (q+1), there is a significant increase in
the amount of computation needed to determine the
coefficients for time-varying LPC as compared
with traditional LPC (where q = 0). However, tech-
niques discussed in reference [4] can be used to
make the coefficient determination efficient.

For example, most of the computational effort
is involved with calculating the elements ckﬂ(i’ i)

for & and U using the summation of Eq. 2.9. But
these elemeénts can be computed very efficiently by
taking advantage of the symmetry of & and because
many elements can be easily calculated from pre-
viously computed elements without using Eq. 2.9.
(Tt should be noted that the determination of the
matrix elements is faster for the power series
method than for the Fourier series method because
no trigonometric functions need to be evaluated.)

Once the elements have been calculated, the
set of equations must be solved to determine the
coefficients. Liporace [3] has developed an effi-
cient algorithm to solve the equations for the co-
variance method where & is a block symmetric
matrix with symmetric blocks. The covariance
method using the power series has the additional
advantage that & can be expressed as a block
Hankel matrix (where all the block matrices along
the secondary diagonal, northeast to southwest, are
equal) for which there is an efficient solution [5],
[6]. For the autocorrelation method, & is a block
Toeplitz matrix and there is an algorithm given in
reference [7] for solving the equations. This method

is an extension of Levinson's recursion algorithm
to the multichannel filtering problem.

ITI. Experimental Results for Synthetic Data

For the evaluation of time-varying linear pre-
diction, the method used was to analyze synthetic
data created by all-pole filters with known time-
varying coefficients. The purpose of these test
cases was to determine the general characteristics
of time-varying LPC and to obtain some insight into
methods for evaluating the performance of time-
varying parameter identification techniques.

The first set of test cases was generated by
all-pole filters excited by a periodic impulse train
with each coefficient changing as a truncated power
or Fourier series. Therefore for these cases,
the form of the system model of the time-varying
linear prediction analysis matched the actual sys-
tem generating the data. The results of these cases
indicated the differences between using the power
or Fourier series for analysis, between using the
covariance or autocorrelation method of error sum-
mation (as developed in Section IT), and between
windowing or not windowing the signal.

There were many conclusions to be drawn from
these examples. The differences between using a
power series or a Fourier series for the analysis
seem to be insignificant. In general, a filter using
one series can be represented almost exactly by a
filter using the other series with either the same or
or a slightly larger number of terms in the series.

For example, the 6-2 power series filter,'r could be
represented accurately as a 6-4 Fourier series fil-
ter, and a 6-2 Fourier series filter needed a 6-3
power series filter to represent it almost exactly.

The covariance method of summation gave bet-
ter results than the autocorrelation method. Under
some circumstances the differences between the
two methods were minor, but this was not a general
rule.

The use of a window had only a slight effect on
the analysis results. Windowing did not signifi-
cantly degrade the performance of the covariance
methods and, in fact, the autocorrelation methods
that used a window seemed to give more accurate
results than the autocorrelation methods without a
window.

These results can be explained, however, by

the fact that the test cases were generated by a
system whose form was the same as that of the
analysis model. Therefore, these methods can
estimate the coefficients of the series for the time-
varying filter even with a window superimposed up-
on the signal because of the sample data in the cen-
tral part of the interval.

However, actual signals are not generated by

*A 6-2 power series means 6 poles, (p=6), with
each coefficient being a quadratic power series,
(q=2).
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the system model of time-varying LPC, and the
use of a window will degrade the method's ability
to track the time variation of the parameters accu-
rately throughout the entire time interval. It does
not seem that windowing is generally a good prac-
tice. In Section IV, the effect of windowing actual
nonstationary speech on the analysis results will
be shown.

All of this analysis indicates that the covari-
ance method without windowing should be used.
Since the results seem to be similar for either
the power or Fourier series, the power series is
preferred because of its computational advantage
over the Fourier series method as discussed in
Section II.

The second set of cases involved the response
of the system to step changes in the center fre-
quency of the poles. This study was carried out
using a four-pole system. The center frequency
of two poles changed discontinuously. The 6-3 co-
variance power method without windowing was used
to analyze the data. Of interest is the trajectory
of the center frequency of the first pole. The pole
angle trajectories for different changes in the cen-
ter frequencies are shown in Fig. 1. The trajec-
tory of the poles for the time-varying linear pre-
diction method is somewhat like the response of a

=~~~ actual center frequency change

—— estimated change
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Fig. 1. Center frequency trajectories for 4-3
covariance power filter.

lowpass filter, but the response is anticipative
since the entire interval is used to estimate the
coefficients. In general, it was found that the sys-
tem response is approximately homogeneous in that
the pole angle trajectory for a given center fre-
quency change is proportional to the size of the
step change and is approximately additive in that
the response to two different jumps in one interval
is approximately the same as the sum of the re-
sponses to each jump taken separately in the same
interval. Thus, the method can be thought of as
acting like a linear lowpass filter in response to
changes in the location of the poles. An estimate
of the frequency response of the method's lowpass
action was obtained from the computed step re-
sponses and is shown in Fig, 2 for the 4-3 and 4-5
covariance power filter. As we would expect, the
4-5 method has a broader "frequency response."

0 dB

4-5 power filter

4-3 filter power filter

Frequency 5 kHz

Fig. 2. Comparison of smoothed unit pulse

frequency responses.

Therefore, it should be able to track changing
center frequencies more accurately than the 4-3
method. LPC with constant coefficients tracked
the step change of the center frequency slightly
better than the 4-5 covariance power method did.

Test cases were also run to evaluate the abil-
ity to track slowly varying changes. Specifically,
the first pole was varied linearly over the inter-
val. It was found that time-varying linear predic-
tion can handle linearly changing poles very well
if the slope is small. For larger slopes the vari-
ation of the pole tends to be smeared over a larger
interval. This supports the studies discussed
earlier in this section in which we indicated that
the method acted as a lowpass filter. Evidently,
the higher slope changes are beyond the cutoff
frequency of the method, yielding the same esti-
mated pole trajectory as for an abrupt step change.

IV. Experimental Results for Time-Varying
Analysis of Speech

In this section, we give an example of the
application of time-varying LPC to a nonstationary
speech waveform. Several different methods for
evaluating the performance were used. The pole
trajectories of time-varying LPC were compared
with the poles of the time-invariant filters esti-
mated by regular LPC. The log spectrum of each
time-invariant LPC filter was also compared with
the log spectrum of the time-varying filter eval-
uated at the time corresponding to the center of
each of the analysis intervals used for regular
LPC. As a measure of how well these spectra
compare, a log spectral measure given by Gray
and Markel [8] and Turner and Dickinson [91 was
used. In addition, the impulse responses of both
regular and time-varying LPC were compared with
the original speech data. The time-varying model
that was used was a 12-5 power series filter, and
the analysis was performed on an interval of length
150 msec.

For regular LPC, a 12-pole filter was used
and the length of each analysis interval was 20
msec. The center of the interval was shifted by
15 msec for each successive LPC analysis, re=-
sulting in some overlap of the data contained in
each interval.

For the regular LLPC analysis, the covariance
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method was used, both with and without windowing
the data. The results for both methods were so
similar that only the covariance LPC method with-
out windowing will be compared with the time-
varying LPC method.

The pole trajectories for the covariance power
series method both with and without windowing the
data are shown in Fig. 3. This illustrates dramat-
ically the effect of windowing, because there are

Unit Circle

¢

(b)

Fig. 3. Pole trajectories for 12-5 covariance
power filter: (a) data not windowed,

(b) data windowed.

poles of the filter for the windowed data that are
outside the unit circle. For a time-invariant filter,
this would mean that the filter was unstable. For

a time-varying filter, this is not necessarily true.
However, the few time-varying filters we have
examined that have had some poles outside the unit
circle have had impulse responses that usually re-
main bounded but excessively large. In general,
the time-varying filter with poles outside the unit
circle would seem to be of no practical value.

The pole trajectories for the 12-5 autocorre-
lation power series filter are shown in Fig. 4.
Again, the autocorrelation filter for the windowed
data has poles outside the unit circle, The results
of the autocorrelation method (without windowing)
agree favorable with that of the covariance method.
The most significant differences occur at each end
of the interval (as we would expect from our dis-
cussion in Section III).

This example shows that for any of the time-

varying methods discussed in this paper, there is
no guarantee that the poles of the filter will remain
inside the unit circle. This is a limitation of the
time-varying method, but whether it is a serious
problem in general practice is not known. Because
windowing the data seems to increase the proba-
bility that the resulting filter will have poles out-
side the unit circle, it appears that the data should
not be windowed. Since the covariance method
seems better justified analytically than the auto-
correlation method, the covariance power method

(b)

Fig. 4. Pole trajectories for 12-5 autocorre=-
lation power filter: (a) data not win-

dowed, (b) data windowed.

(without windowing) will be used for comparison
with regular LPC.

For the covariance power method, it can be
seen that there are only 5 sets of complex poles
over much of the interval. The other two poles
were generally real. This was also true occa-
sionally for the time-invariant filters determined
using regular LPC. For comparison purposes,
only the five sets of poles that were always com-
plex were compared with the time-invariant LPC
poles.

The trajectories of the center frequencies for
both methods agreed favorably. The main devia-
tions between the time-varying method and regular
LPC occurred in the first and second poles at the
beginning of the time interval, where the "lowpass"
nature of the time-varying LPC method is most
evident, The time-varying method corresponded
to "smoothed" values of the center frequency loca-
tions of regular LPC. The radius trajectories of
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12-3 Covarisnce Power
Filter Spectra

12-0 LPC Spectra

CENTER TIME
(msec)

seotre’ - 1.8 4 seoree*” - 1.9 a3
AVG SPDIFF - 2.3 dB
M 30 Prm
s s
seoIPF - 2.2 4B SEDIFY - 2.5 4B
AVG SPDIFF - 2.5 dB

45

1 2 3 4 5 kHz 1 2 3 4 5 kBsz
SPDIFF - 4.8 dB SPDIFF - 3.3 dB
AVG SPDIFPF - 3.4 dB
Py M
5 5
sPDIFY - 3.0 4B SPDIPY - 1.3 4B

AVG SPDIFPF - 1.7 dB

i in
e 75 i
5

L
.96 dB
1.3 dB

SPDIFY -
AVG SPDIFF _

SPDIFF - 2.3 dB

Fig. 5. Comparison of actual and filter spectra

for preemphasized speech example.

="Difference between 12-0 (regular) LLPC
spectra for successive center times
(i.e., between 15 and 30 msec).

**Difference (and average difference) be-
tween 12-0 and 12-5 filter spectra for
same center time.

the poles agreed fairly well, except for the fifth
pole. The center frequency trajectory of the fifth
pole matched very well, while the radius irajectory
did not. The radius trajectory deviations seem to
be a result of the "lowpass" nature of the tirne-
varying method.

Next we compared the log spectra of the all-
pole time-invariant and time-varying filters with
log spectra of the speech signal. The spectra were
compared because LPC can be thought of as attempt-
ing to match the spectral envelope of speech with
the spectrum of the all-pole filter. This is dis-
cussed in detail in [2]. For the time-varying case,
the spectrum was defined at a time instant T as
the frequency response of the filter with coefficients
ai(k) twoiz0,...,p.

The spectra for the regular LPC and time-
varying LPC filters for selected times are shown
in Fig. 5. The spectra have been adjusted so that
the largest value is 0 dB.

We used a log spectral measure to determine
quantitatively the difference between the spectra
for both LPC methods [8],[9]. This spectral mea-
sure SPDIFF is given by

5 1/2
_(_1l0 2
SPDIFF = (ln g} [z k>=:l (e, ~c}) ] . (41

Using the cepstral coefficients (¢, k = 1,p) we
calculated from the filter coefficients (a,k, k =1,p).

Turner and Dickinson [7] state that perceptual
studies have shown that SPDIFF changes of 2 dB
are barely noticeable, but that changes of 3.5 dB
are consistently perceptible.

Turner and Dickinson have also developed an
average SPDIFF for filters with time-varying co-
efficients. In our study, we want to compare a
filter that has constant coefficients (ai, i=1, . s P)

with a filter that has time-varying coefficients
(a!l(n), i=1,...,p), where n is evaluated over an

interval of interest (which, for now, we will as=
sume to be [l,L]). For this, the time-average
spectral difference is

AVG SPDIFF
1
=( 10y, (15, 3 (e, ~ct (n))> i
T R SR R Y

(4.2)

where the cepstral coefficients are ck(n) using the
coefficients (ai(n), i=1,...,p). This is a mea-

sure of the average spectral difference between the
time-invariant filter and the time-varying filter
over the interval [1,L].

The spectral difference, SPDIFF, between the
regular LPC estimated filter and the time-varying
LPC filter evaluated at the time corresponding to
the center of the regular LPC analysis interval is
given in the right-hand column of Fig. 5. The time
average of the spectral difference, AVG SPDIFF,
between the regular LPC filter and the time-
varying filter for all the time steps n in the cor-
responding regular LPC analysis interval is also
listed. As an indication of how quickly the speech
spectrum is changing, the spectral difference be-
tween the regular LPC filters for successive anal-
ysis intervals is given in the left-hand column,

There are large spectral differences between
the successive regular LPC time-invariant filters
for the comparison times of 45 and 60, and 60 and
75 msec. These are the times in which the signal
characteristics change significantly. The largest
average spectral differences between the time-

1090

- T RN T

-




varying LPC filter and the regular LPC time-
invariant filters occur at the times of 30 and 45
msec. The values of the average spectral differ-
ences were 2.5 and 3.4, respectively, which would
indicate that the differences between the two meth-
ods would be perceptible. After 60 msec, the av-
erage difference between the time-varying spectra
and the time-invariant spectra were generally less
than the difference between the time-invariant spec-
tra for successive intervals, which would signify
that the time-varying method is "tracking" the
changing spectra very well.

The relatively large deviation of the time-
varying spectrum from the actual speech spectrum
for the times around 45 msec can be explained in
part because of the "lowpass" action of the time-
varying filter. The severity of the deviation is
probably also due to the unequal energy distribu-
tion of the speech signal and of the impulse driving
the system. The conclusion is that the time-
varying filters should match the high energy areas
of the nonstationary signal the best. In order to
have a relatively good match over all the data in
the interval, the energy of the signal or the driving
impulses throughout the entire interval should be
iap]proximately equal. This is discussed further in

4].
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